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Theoretical Aspects of Nonlinear Oscillations™

N. MINORSKY t

INnTRODUCTION
NONLINEAR problems acquire a gradually in-

creasing importance in various branches of
applied science. It is therefore useful to give a
brief outline of these questions.

The theory of oscillations is the best-explored branch;
here the nonlinear theory was gradually worked out and
applied to numerous phenomena, some of which are
outlined below. There are other branches into which non-
linear problems began to penetrate in recent years, such
as theory of automatic control systems, econometrics,
biology, astronomy, atomic theory, etc., but in all these
new developments the fundamentals remain very much
the same.

On the theoretical side the situation seems to be
gradually codified owing to an intense activity going on
steadily for the last three decades or so. It must be said,
however, that the whole situation is not definitely crystal-
lized, so to speak. There are some topics where mathe-
matical developments are ahead of the experimental
evidence; at other points, on the contrary, there exists
no definite theory capable of accounting for the observed
facts. Finally, there is a domain in which there are two
competing theories, and it is impossible to say at present
which is “better’” since much depends on one’s point of
view.

However, there is a domain, the nearly linear domain, in
which the final codification has been apparently reached;
that is, both the theory and the experimental evidence
proceed in agreement with one another. It seems likely
that when the synthesis (7.e., engineering applications)
eventually start, the principal developments are to be
expected in this domain where everything seems to be
clear and definite

For systems with one degree of freedom (electrical
or mechanical) these nearly linear problems are amenable
to differential equations (DE) of the form

i+ x4+ ufx, i) =0 ey

where f(z, £) is a nonlinear function of  and & and u are
a small parameter. In such a case (1) differs but little
from the linear DE & + z = 0. However, the fact that the
two DI are “near” or “in the neighborhood,” or another
such condition, does not mean yet that their solutions
are also in a corresponding ‘‘neighborhood.”” Thus, for
instance, if f(z, ©¢) = bi, the two DE & 4+ =z = 0 and
i 4+ u bi + z = 0 are in the neighborhood, but their
solutions are not if { — .
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The investigation of conditions under which (1) has
periodic solutions constitutes the problem of Poincaré (1]
outlined in section 3.

As the nonlinearity is “gauged,” so to speak, by the
smallness of g, it is customary also to speak about the
method of small parameter (or parameters).

If u is not small, nonlinear problems become far more
complicated. The physical interpretation of the “large
parameter”’ domain is in the so-called relaxation oscilla-
tzons, which we will not investigate here.

In the range of small-parameter problems the math-
ematical treatment is somewhat different, according to
whether the DE is of “autonomous” or “nonautomonous”
type. In the former the independent variable ¢ does not
enter explicitly in the DE, whereas in the latter it does.
From the standpoint of analytical treatment, there is not
much difference between these two types of DE, but the
topological approach, so useful in autonomous problems,
ceases to be applicable in nonautonomous ones.

Besides the main body of problems amenable to ordinary
nonlinear DE, phenomena also appeared whose treatment
is amenable to certain functional equations of the differ-
ence-differential type (DDE). The theory of these DDE
is different, and we merely mention it in reference to
publications [2] on the subject. These phenomena appear
whenever there are ‘“retarded actions’” in physical systems
caused by time lags.

A classification of nonlinear problems can be summarized
in Table I.

TABLE I

1) Autonomous (self-sustained
oscillations)

2) Nonautonomous (subhar-
monic resonance, synchroni-
zation, parametric excita-
tion etc.)

A. Nearly linear problems (u
small)

B. Strongly nonlinear problems
(u large) (relaxation oscilla- .
tions) 1) Discontinuous theory

2) Analytical theory

C. Retarded actions; DDE.

There are still some special problems of a more compli-
cated functional type but these are hardly explored at
present.

In problems B-1, use is made of certain idealizations
which result in a discontinuous theory resembling that
used in the theory of shocks in theoretical mechanics;
topological concepts play an important role in that theory
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which, for that reason, is essentially qualitative and can
be used easily in applied problems [3]. The analytical
approach to these problems [4] is at present very compli-
cated and can be regarded as an advance in the theory of
nonlinear DE rather than as a practical tool in the hands
of physicists or engineers.

As regards problems C, these oscillatory phenomena
begin to play an important role in the theory of automatic
control systems where time lags are inevitable; their
theory is beyond the reach of ordinary nonlinear DE, and
the reader has to consult special treaties on this subject
[2] as even a short outline of this matter is impossible in
this review.

It is likely however, that problems A will continue to
be of a primary importance, particularly when the
synthesis stage of these studies is ultimately reached.

As regards the contents of this paper, Section I gives a
brief summary of existing topological concepts and
methods; it is assumed that the reader has already a
certain preliminary knowledge of these questions. Section
IT gives a similar review of principal analytical methods;
the last section in this chapter outlines the recently
developed stroboscopic method which is used in the
calculation of certain nonlinear phenomena in Section III.

I. ToPOLOGICAL ASPECTS OF THE THEORY

A. Singular Points

This subject develops from the important paper of
Poincaré [5] which can be found now in any text on the
theory of DE {6]. We merely mention here some of the
important topics and definitions.

The plane of the variables z, % is called phase plane, and
the study of integral curves (characteristics) is usually
conducted in this plane. An integral curve with the direc-
tion of motion of the representative point R (the instan-
taneous state of motion) is called #rajectory.

For a physical system with one degree of freedom of
autonomous type, the DE are of the form

where P and @ are either analytic function of z and y or
polynomials. A point z, ¥ for which P and @ do not vanish
simultaneously is called an ordinary point, while a special
point z,, ¥, for which both P and @ vanish is called a
singular point. In the theory of oscillations singular points
are identified with positions of equilibria. Singular points
are characterized by the form of trajectories in their
neighborhood, as well as by the direction in which R
moves: if B moves toward a singular point, the latter is
stable; if it moves away from it, it is unstable.

One often writes the functions P and @ in (2) in the form
Pz, y) = ax + by + P»(z, y);

Q(xy y) =cx + dy + QZ(‘TJ y): (23‘)

where P, and €, are either the entire functions or poly-
nomials whose degree begins with 2?, * 2y or higher. In
a great majority of cases encountered in applications, one
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can neglect P, and Q, for the determination of singular
points, in which case the problem is simple, and it is shown
that the nature of a singular point is determined by the
nature of roots of the characteristic equation

S — (a+d)S + (ad — cd) = 0. 3)

If S, and S, are real and of the same sign, the singular
point is a node;

if S, and 8, are real and of opposite signs, the singular
point is a saddle point;

if S; and S, are conjugate complex, the singular point
is a focus;

if S; and S, are purely imaginary, the singular point is
a center.

The first three singularities are called simple; as to the
last one, the center, it is already a special singular point.
In fact, in some cases it is impossible to distinguish a
center from a special form of a focus on the basis of the
first approximation (i.e., assuming that P, = @, = 0).
The problem then becomes more complicated and requires
the study of terms of higher degrees in P, and Q,.

The simple singularities have a definite physical mean-
ing: a node characterizes the position of equilibrium toward
which an aperiodically damped motion approaches; a
focus, the equilibrium toward which an oscillatory damped
motion approaches; finally, the saddle point always
characterizes an unstable motion, for instance that of a
pendulum in its upright unstable position of equilibrium.
As the representation of these motions and trajectories
in the phase plane is likely to be known, we do not repro-
duce them here. If the word “approaches” in the above
definitions is replaced by ‘“moves away,” instead of stable
singular points (node or focus), one has unstable ones, the
form of trajectories remaining the same in both cases.
Trajectories near a node are stable (unstable) if the roots
of (3) are negative (positive). Near a focus they are stable
(unstable) if the real part of the roots is negative (positive).
The saddle point is always unstable. As to the center, its
equilibrium is ¢ndifferent in this classification. Nodes and
foci always characterize nonconservative physical systems.
Centers appear only in conservative systems under very
special conditions. Saddle points occur both in con-
servative and nonconservative systems.

B. Limit Cycles

The most important discovery of Poincaré was the
establishment of certain closed trajectories which he calls
lemit cycles (“‘cycles limités;” in the following we shall use
often the term cycle) having the following properties:

1) There exists one single (isolated) closed trajectory
C, the “cycle” (at least in a finite region of the phase
plane), all other trajectories being nonclosed and having
the form of spirals ¢’ winding (unwinding) themselves on
the stable (from the unstable) cycle as shown in Figs. 1 and
2, which are self-explanatory. One consequence of this
definition is obvious: since any point of the phase plane
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represents some initial condition, and through each such
point a spiral €’ passes, it is clear the ultimate motion on
the cycle (for ¢ = + = if the cycle is stable, or for
t > — o, 1f it is unstable) does not depend on the initial
conditions. In this respect the motion on a cycle differs
radically from the motion on closed trajectories around
the center where, on the contrary, any change in the
initial conditions results in a new trajectory, which has no
tendency to return to its former path (prior to this change).

p

Fig. 1. Fig. 2.

Contrary to singular points, which very frequently are
determined by the linear terms of functions P and @, the
cycles are manifestations of the presence of nonlinear
terms in these functions. Unfortunately the matter here
is more complicated, for the form alone of these functions
is not sufficient to determine the presence of cycles, as we
shall see later.

C. Topological Configurations

Poincaré has shown that limit cycles and singular points
form certain topological configurations, that is, that they
coexist together. The theorem of Poincaré is sufficiently
general and is based on his theory of indices, but for the
sake of simplicity we use here a simplified statement:
Every limat cycle contains at least one singular point in its
interior of stability opposite to that of the cycle.

Thus an unstable singular point (a focus or a node) is
surrounded by a stable cycle (Fig. 3) and vice versa
(Fig. 4). We can use the notation IS for the configuration
of Fig. 3 and SI for that of Fig. 4, the first letter relating
always to the stability of the singular point and the second
to the stability of the cycle. From the physical point of
view the configuration IS usually designates a process of
self-excitation (e.g., of an electron tube circuit) when a
trajectory unwinds itself from the unstable singular point
(state of rest) and winds itself onto the stable cycle from
inside. The configuration SI, on the contrary, designates
the disappearance of an oscillatory process.

It is convenient to consider trajectories as ‘‘lines of
flow” (of a certain “fluid of trajectories’’) which facilitates
the grasp of these phenomena. From that viewpoint the
unstable elements of configuration (singular points or
cycles) appear always as “sources,” and the stable ones,
as ‘“sinks.”” The interpretation of Figs. 3 and 4 is then
obvious.

Occasionally one encounters more complicated con-
figurations involving several cycles (of a “concentric”
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type), e.g., ISIS (Fig. 5) and SIS (Fig. 6). In the latter
case, for instance, as the singular point is stable, the
system is not self-excited. If, however, one communicates
an impulse SA transferring the representative point beyond
the unstable cycle, the system is able to settle on the
external stable cycle. Such phenomena are called “hard
self-excitation.”

s 1

Fig. 4.

Fig. 5.

D. Bifurcations

In his work on a cosmogonic problem [7] Poincaré
investigated the behavior of solutions (trajectories) of
a DE containing a parameter A (not to be confused with
the parameter u). If for a small variation A around some
value the topological configuration remains the same
qualitatively, such a value is called the ordinary value of
\. If, however, for a small change A\ around some special
value A = X, the qualitative aspect of the configuration
changes, such a value is called the bifurcation value. This
theory found considerable application in oscillation
theory. There are two prineipal types of these phenomena.

1) Bifurcation of the first kind ocecur when a stable
(unstable) singular point becomes unstable (stable) with
the appearance of a stable (unstable) cycle. In our
notations this can be indicated by the schemes

Se(dS)=18; Ie (SD e (Sh.

The letters in brackets indicate the elements in a state
of coalescence (i.e., a semi-stable cycle) just before they
split into a singular point and a cycle; the double arrows
merely show that the phenomenon is reversible.

The first of these schemes is well known in radio
technique; that is, a regenerative amplifier circuit in
absence of any signal remains at rest, which we indicate
here by the symbol S.

If, however, the parameter X (the coefficient of coupling
between the anode and the grid circuits) begins to in-
crease, the bifurcation point will be reached when the
circuit is just on the threshold between the amplification
and the oscillation ranges. If this threshold is crossed,
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the circuit begins to operate as oscillator on a limit cycle;
the configuration is then IS in these notations.

2) Bifurcations of the second kind occur in polycyclic
configurations when, as the result of parameter variation,
two adjoining cycles (one stable and the other unstable),
approach each other indefinitely and coalesce for A = X,.
Beyond this value of the parameter, they destroy one
another. The phenomenon is reversible if the parameter
varies in the opposite direction. This effect can be repre-
sented by the following scheme:

ISI=2IS) =21, or SIS= S(IS) = 8.

Summing up, a bifurcation of the first kind changes
the number of cycles by one unit, while that of the second
kind changes it by two units.

I7, Poincaré-Bendixson Theorem

The determination of limit cycles, in general, is a very
difficult problem and could be solved only in a few simple
cases.' The difficulty is due to the fact that it is impossible
to ascertain the presence of a cycle from the form of the
DE. What permits ascertaining the existence of a cycle
is the knowledge of the topology of the solutions of a DE,
but the latter is generally unknown; one finds oneself in
a vicious circle from which there is no easy issue.

Poincaré indicated certain necessary criteria (theory
of indices, curves of contact) which were generalized into
a theorem and later improved by Bendixson. This cri-
terion is known now as the Poincaré-Bendixson theorem.
It gives the necessary and sufficient conditions for the
existence of a cycle but its application is not without a
difficulty. The theorem states:

Fig. 7.

If it is possible to determine an annular D (Fig. 7)
limited by two closed curves C, and C, such that: 1) there
are no singular points either in D or on the boundary
curves C, and C,, and 2) if all trajectories enter (leave) D
through every point of €, and C,, then there exists at least
one stable (unstable) limit cycle in D.

! This remark relates to the general theory; it will be shown
later that in the theory of approximations, on the contrary, the
problem does not present any difficulty.
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Although the significance of the theorem is obvious on
the basis of the concept of ‘“‘sources” and ‘‘sinks,” its
application generally is difficult on account of condition
2). In fact, in order to determine correctly the bounding
curves, it is necessary to know the behavior of solutions,
but these are unknown, as was just mentioned. It is often
necessary to apply a great deal of ingenuity in order to
construct such a domain. In cases when one strikes a
problem in which no such a difficulty exists, the theorem
gives an immediate answer.

We shall not go beyond these few remarks, but we shall
refer the reader to existing texts [6].

II. ANALYTICAL ASPECTS OF THE THEORY

A. Method of Poincaré

The essence of the method is to establish the existence
of a periodic solution of a nonlinear DE, which we shall
consider here to be in the form (1). We have already
mentioned this problem in the Introduction. The solution
can be written in the form

v =z u K); y=2=ylnuK) 4
where K is the amplitude. It is useful to introduce two
additional parameters

B = x(O, KM, K) - 17(0, 0) K):
B2 = y(O: K, K) - y(O; 0, K):

(3)

which determine the difference between the initial con-
ditions of a nonlinear (z > 0) and linear (¢ = 0) solutions;
it is obvious that 8, (1) — 0, 8.(x) — 0 when p — 0.

At this point a difference appears between the
autonomous and nonautonomous systems, For the former
the period is determined by the DE, whereas for the latter
it is fixed by the external periodic excitation (more
precisely, by the term containing ¢ explicitly). There is
also another difference: in the autonomous systems one
can always replace ¢ by ¢ + &, {, being a constant without
changing the solution. One can therefore select ¢, so as to
make one of 8 equal to zero. Suppose that we make
B: = 0 and set 3, = B. Thus, in an autonomous system
the parameters will be g, 8, and =, the latter being the
so-called correction for period. In the nonautonomous
system (which has no ‘“translation” property), one cannot
dispose of arbitrary ¢, and has to keep both 8, and 8,.
However, 7, the period correction, does not exist, since the
period.is fixed by the term containing ¢ explicitly and not
by the parameters of the DE. The further treatment of
both cases is analogous,” so that it will be sufficient to
study the autonomous systems which are more important
in application, at least at present.

? This statement applies to the existence of the solution but
not to its stability; regarding stability, while this problem is simple
for autonomous systems, for the nonautonomous ones it is far
more complicated.
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The conditions of periodicity can be written as
z@2r + 7, p, 8, K) — 200, u, B, K)
= pd(r,p,B8,K) =0
y@r + 7, 0,8, K) — y0, 1, 8, K)
= p¥(7, u, 8, K) = 0.

(6)

On the right-hand side z is taken as a factor in order to
take into account the fact that for 4 = 0 there is always
a periodic solution. Hence, if 4 ¢ 0 (z.e., in the nonlinear
case), periodicity is possible only if

®(r, u, 8, K) =0 and ¥(r,p, B,K)=0. (7)

The essential part of the theory is the theorem of
Poincaré [9], which states that in the case of a DE con-
taining a parameter g, like (1), the solution is analytic
in terms of this parameter (or parameters, if there are
several). This means that the solution can be represented
by an entire series arranged according to the ascending
powers of these parameters.

As we have here three parameters, of which p is in-
dependent and the other two are 8(u) and 7(p) such that
a(u) — 0, 7(u) — 0 when g — 0, the functions ® and ¥
are of the form '

=& +a+br+eB+ -

V=¥ 4+ap+brt+cB8+ - ---.

)

For the first approximation, it is sufficient to take only
linear terms in (8). For approximations of higher orders
it is necessary to take more terms in these series. We shall
limit ourselves to the first approximation. In fact, the
method becomes clear from the first approximation with-
out complicating it too much; moreover, if u is small, as
we assume, higher order approximations hardly add any-
thing of interest but complicate calculations considerably.
It is clear that functions S(u) and 7(g) in the first approxi-
mation can be taken as 7(u) = ap and B8(z) = yu where
a and vy are unknowns. We have thus a system of two
algebraic equations,

P

By + pa + ba 4+ ey) = 0
\I’0+p.<(11 + b1a+01’)’) =0

(9)

which are valid in the first approximation and which must
be solved for any arbitrary u (provided it is sufficiently
small). It is clear that, in order to determine « and v
from these equations, the following conditions must be
fulfilled:

1) q)o = ‘I’o =0 (IOa)
and
b ¢
2) #= 0. (10b)
by ¢
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ar ’ T ar’ ! a‘r’an cl—a‘r’
the second condition can be written as
23 58
9 0
J=19 %« (11)
ov ov
dr adB

Hence, if & = ¥, = 0 and the Jacobian (11) is different
from zero, there exists at least one periodic solution of
the nonlinear problem, small g. The rest of the calculation
is simple but long. One begins by expressing z({) and
y({) = z(t) in terms of the series of Poincaré. Then one
develops the function f(z, ) in (1) around the values
zo(t) and y,(t), which are the so-called ‘“generating solu-
tions” for u = 0, and substitutes these series into (1).
Then one arranges the various terms according to the
like powers of u. In this way one obtains finally a system
of linear DE, which can be integrated successively and
yield the coefficients of the series. These coefficients are
functions of ¢.

The method of Poincaré is very general and yields
successive approximations; in its original form it was
established for astronomical calculations. Later on it was
adapted [11] for other applied problems, but it is still too
complicated because of its generality. Its importance is
in that it opened an entirely new avenue of approach to
the solution of nonlinear problems.

B. Methods of van der Pol and of Krylov-Bogoliubov

These two methods are very close to each other. The
idea is to take a simple harmonic solution and to “fit”’ it
into the nearly linear equation. For this purpose the
constant parameters of the harmonic solution are con-
sidered as function of ¢ subject to the determination by
a method similar to the classical method of the ‘“‘variation
of parameters’ in the theory of DE.

The whole difference between the two methods® is that
van der Pol takes the harmonic¢ solution in the form,
A sint 4 Bcost, while in the Krylov-Bogoliubov method
this solution is taken in the form, a cos (wt + ¢).

We outline here the Krylov-Bogoliubov method as a
little more convenient to use. The DE in this method is
considered in the form

%+ o'z + pf(z, £) = 0. (12
Substituting the solution z = a sin (ot + ¢), and im-
posing an additional condition that & should be of the
form

% = aw ¢os (wt + ¢), (13)

3 Historically, the method of van der Pol is earlier (around
1927) than the method of Krylov-Bogoliubov (1937).
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one obtains the following DE expressing this condition:
dsin (wt + ¢) + a¢ cos (wt + ¢) = 0. (14)

Replacing z, ¢ and & (in which differentiations are carried
out with respect to a and ¢), one gets the second DE,

dw cosy — awp siny + uf(asin~y, aw cosy) = 0;
where

v = wt+ ¢ (15)

Solving these equations with respect to d and ¢, one finds
that the right-hand side contains the small factor p; this
shows that a(f) and ¢(f) are slowly varying functions of ¢.
Hence during the longest period T of the trigonometric
functions (which appear as the result of the development
into a trigonometric series), one can assume that a and
¢ are constant, thus approximating a trigonometric series
by the regular Fourier series. If one integrates between
0 and 7, all trigonometric terms drop out, and only the
constant terms Ky(a) and P,(a) remain; if one replaces
them by their Fourier expressions, one finds the usual
form of equations of the first approximation,

da w1

dt = “wor

f flasin vy, aw cos ) eosy dy = ®¥(a),
’ (16)
ay 1

ML
dt _w+aw27r

27
f flasiny, w cos y) sin v dy = Q(a).
0

The first equation gives the stationary amplitude a,
from the equation ®(a,) = 0, and the second, the non-
linear frequency correction by the second term on the
right-hand side of the second equation.

For the first approximation, these two methods are
simpler than Poincaré’s method, but initially the van der
Pol method was not adapted for approximations of higher
orders; later Krylov and Bogoliubov [12] developed a
method based on an earlier procedure of Lindstedt used
in astronomy for approximations of higher orders. Finally,
recently Bogoliubov and Mitropolsky [13] generalized
this method still further.

C. Stroboscopic Method

This method is applicable to both nonautonomous and
autonomous systems and occupies a somewhat inter-
mediate position between topological and analytical
methods; it has been worked out in collaboration with M.
Schiffer and applied later to various problems, as will
appear from the following section.

The method is based on the transformation theory of
DE. Its primary purpose is to replace the difficult problem
of the determination of a stable periodic solution of a
nonautonomous system by the simpler problem of
establishing conditions for the existence of a stable singular
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point of an auxiliary “stroboscopic’” system. We give a
brief outline of this method.

Consider a simple problem with a DE: & + = = 0. Its
trajectories are circles concentric with the origin. The
representative point R, starting from some point R, on
the circle, comes back to this point after the period 2.
This defines a transformation effected by the DE during
the period 2. Clearly, from the standpoint of the trans-
formation it is immaterial what happens during the time
interval 0, 2m; the essential point is in the result of the
transformation. This result could be obtained if, instead
of 'illuminating motion continuously, one illuminated it
by stroboscopic flashes occurring once during the time 2.
In such a case one would see only the fixed point R,.

It is useful to define two planes: 1) the plane () in
which one sees the continuous motion and 2) the sirobo-
scopic plane (¢), in which one sees only the stroboscopic
image, a fixed point in this case. One can designate the
tdentical transformation just mentioned by a symbol,
T"(Ry) —n-w Ro, which means that the transformation
T applied n times to the point R, of the phase plane
always results in the same point R,.

In a slightly more complicated case, when the van der
Pol equation acts as an operator of the transformation,
one has the transformation 7"(r) —,.« 70 = 2, which
means that the radius » approaches the value r, = 2 after
an infinite number of transformations. In the stroboscopic
plane, there will be a discrete sequence of ‘‘stroboscopic
points,” 4,, A, As, --+ , converging to a limit point A4
(Fig. 8) both from the inside and the outside of the circle
along the radius. This is valid in the first approximation,
since, as is known, the period then is 2#, so that for the
phase the transformation is identical. If one had to take
into account the correction for the period, this would
cause a slight departure from radial motion. One can
consider the limit cycle as a locus of limit points A if the
phase of the flashes changes, since everything is sym-
metrical with respect to the circle 7, = 2. So far this
amounts to presenting the known facts in a different
manner, but it will be shown that this argument leads to
important results.

Fig. 8.

It is useful (although not necessary) to introduce two
new variables p and y, defined by the relations: p = r* =
z° + &%y = tan~'(3/z), where p = >, & = y,and z = r
cos ¥ and y = r sin . Clearly, the variable p is a measure
of total energy (stored in the oscillation) up to a constant
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factor. One writes (1) as an equivalent system of two
first-order DE (setting y = &), and introduces these
variables, noting that z¢ + yy = 1/2 dp/dt and zy —
y& = p dy/dt. It is sufficient to replace z and y by their
values in order to have equations in the new variables.
If one applies this to the DE of harmonic oscillator,
% + z = 0, one finds

do _

. dy _
dt_o’

T —1. (17)

The first expression shows that the energy is conserved,
and the second indicates that the period is 27; these
are obviously equations of a harmonic oscillator in our
new variables.

One ascertains easily that any nearly linear DE of the
type (1) can be written in the form

dy _

9 = uf(o, v, 0; O 18

—1 + #Q(P» "py t)

If one replaces in these DE the series solutions of the
form
o) = po(® + pp(t) + -+ ;
YO = ) + @ + -

one finds that for the zero-order terms (those which do not
contain ) one has

(19)

’J/o(t) = ¢ — t; (20)

where p, and ¢, are the initial conditions. The first-order
corrective terms are

po(t) = po;

pl(t) = j; f(Po, ¢ — o, U) do = K(pO) ¢0)1

(21)
1) = [ dlon, 80 = 0,0) do = L(p, 40,
The first-order approximation is then
p(t) = po + up(t); WO = ¢ — ¢+ udu(d). (22

It is clear that these expressions cannot be used for
t — o since we have neglected the higher order terms
(with ¢°, £%, -+ ) and these may give rise to the so-called
secular terms, which would impair the accuracy of approxi-
mation in the long run. Instead of this we apply the
following procedure: we let time run from 0 to 27 and
determine p(27) and ¢(2x) from (22). The values so
obtained will be used as the initial conditions for the
interval (27 to 47), and again the time will run for the
interval 27 and so on. In this way the error owing to
neglecting higher order terms will be kept under a certain
value and will not accumulate. It is seen, however, that
the initial conditions zn each interval will play the role of
a discrete variable resulting from the fact that we have
replaced the original DE (18) by difference equations, as
we are going to show now.
Clearly (22) may be regarded as a transformation,

o= p+ up; ¢ = ¢ + u, (23)
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where p’ and ¢’ are the terminal values in some interval
and p and ¢ the initial values. Setting p/ — p = Ap,
¢’ — ¢ = A¢, and taking into account (21), (23) can be
written as

Ap = 2muK(p, ¢);  Ap = 2muL(p, ¢). (24)

We have taken 27 as a factor, as it usually appears in
integrations. It is noted that the variable ¢ has disappeared
in integrations (21) and K and L are merely some numbers.
It is convenient, however, to re-introduce the temporal
element by defining

(25)

where r is the new independent variable, the stroboscopic
tsme. The difference equations can now be written as

2 _
22— Lo, 9).

2mp = AT,

Ap _ )
At - K(p, ¢)J

(26)
These equations permit calculating successively the
“stroboscopic points” in the-¢ plane. If the phenomenon
lasts long enough in terms of one time interval 2w, one
can introduce a continuous variable (since Ar — dr;
Ap — dp and A¢ — do).

At the limit we obtain the stroboscopic DE,

dp _
dr

ar = @)

K(p, ¢); L(p, ¢).

It is noted that the stroboscopic system is autonomous
although the original system (18) is nonautonomous.
Hence, the topological argument can be used in connection
with (27), whereas it was impossible for (18).

One thus arrives at the theorem:

The existence of a stable singular point of (27) is the
criterion for the existence of a stable periodic solution
(limit cycle) of (18).

In fact for a singular point one must have

K(p07 ¢0) = L(p07 ¢0) = 07 (28)

which means dp/dr = 0 and d¢/dr = 0. In other words,
there exists a stable fixed point in the ¢ plane, and this
in turn means that the trajectory in the ¢ plane passes
always through the same point (po, ¥5). In other words,
the trajectory is fixed in all its points and, since it is
periodic with period 2, this is a closed trajectory (the
limit cycle).

We omit some further remarks regarding the properties
of the stroboscopic system and pass directly to the survey
of applied problems.

ITI. PrincIPAL N ONLINEAR PHENOMENA

A. Parametric Excitation

It has been known for a long time [14] that if a parameter
of an oscillating system is varied with double frequency
(compared to the free frequency of the system), an
oscillation with the free frequency builds itself up in that
system. In recent times such experiments were produced
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by Mandelstam and Papalexi with an oscillating circuit,
and it was ascertained that if the system is linear, the
oscillation builds up indefinitely until the circuit is
punctured by an excessive voltage. If, however, a non-
linear conductor is inserted, the amplitude of oscillation
reaches a finite value and is stable [15].

These phenomena are amenable to the DE of Mathieu
[16], which for a linear case has the form

&4+ (1 + acos2hx = 0, (29)

and for the nonlinear case (we refer to the above-mentioned
tests) it is

i+ bi + (1 + acos 2z + ci® = 0. (30)

We shall treat both cases by the stroboscopic method
[17] in the first approximation and will assume that all
coefficients are small numbers in order to be in the nearly
linear domain. Consider first (29). Its equivalent system
ist =y;7 = — 2 — a[Cos 2t|x. Introducing the variables
p and ¢ (Section II-C) one obtains the differences,

Ap = Ap = —327ma cos 2¢,, 31)

of p and ¢ for one period 2x. Here a plays the role of u, so

—12rap, sin 2¢;

that the stroboscopic time element is A7 = 27a. The
stroboscopic system is then

d . d

d—’: = —3[sin 2¢]p; d_f = —1% cos 2¢. (32

It is seen that (32) has no singular point, as sin 2¢, and
cos 2¢, cannot vanish together, but the second equation
shows that the phase has an equilibrium point when cos
2¢o = 0, that is, when sin 2¢, = & 1. The choice between
these two values is dictated by the stability of ¢o. Forming
the variational equation for the second equation in (32)
(i.e., replacing ¢ by ¢, - 6¢, where 8¢ is a small perturb-
ation), one finds that the phase is stable when ¢, = 37/4,
that is, when sin 2¢, = — 1, and for this value the first
equation shows that p increases beyond any limit.

The procedure for the DE (30) remains the same; here
it is impossible to eliminate the term bz by the classical
transformation of the dependent variable as in the linear
case. The stroboscopic system in this case is

dp

o= —3p[2B + Asin 2¢]) = K(p, ¢),

(33)
d¢ _ —1[4 cos 2¢ + §Cp] = Lp, ¢)
dr — r 2L p p;¢)

where A = a/u, B = b/u, and C = c¢/p are the parameter
of the series solution. The singular point of (33) exists if

sin 2¢, = —2B/A; cos 2¢, = —3Cp/2A. (34)
Since |sin 2¢,] < 1, we have the first condition
A > 2B. (35)

Forming the expression sin®2¢, + cos*2p, = 1, we obtain

po=§26\/A2—4?. (36)
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The quantity p, is real if the condition (35) is fulfilled.
In order to see whether the singular point is stable, it is
necessary to form the characteristic (3). From the
general theory it follows that ¢ = K, , d = L, b = K,
and ¢ = L,, where K,, K,, L, and L, are partial derivatives
of the functions K and L in (33) with respect to p and ¢
at the point p, and ¢,. If one carries out this calculation,
(3) in this case, one gets

8% + BS + (A7 ~ 4BY) = 0, 37)

and for a stable singular point, it is necessary to have to
fulfill again the condition (35), which is thus the necessary
and suflicient condition for the existence of amplitude and
phase as well as for their stability. This result is again in
agreement with the above-mentioned experiments.

In recent years the theory of parametric excitation was
further generalized [18], which permits studying a number
of phenomena which are similar but of a more complicated
nature.

In all problems of parametric excitation the essential
feature is that the phenomenon always starts from rest.
In other words, the degree of freedom of the parameter
variation always absorbs the energy which is transferred
into the principal degree of freedom where the oscillation
builds up. This is because of the fact that the stable phase
oceurs for ¢, = 37/4 for which the amplitude is unstable
as we mentioned previously. One can question whether
the “inverse parametric effect’’ is possible. It is clear that
it ecannot occur sponianeously as it is inherent in the un-
stable phase ¢, = /4. However, if such a phase could be
imposed artificially by an additional circuit, the inverse
phenomenon undoubtedly could be produced. In such a
case a bar, or string, oscillating laterally (owing to an
external periodic excitation of some kind) could be brought
to rest, or its oscillation reduced, by an axial periodic
force with the phase ¢o = /4. In such a case, instead of
excitation, one would have a parametric damping.

B. Subharmonic Resonance

It has been known for a long time that if a nonlinear
system is acted on by two periodic forces of frequencies
w, and w,, the response of the system occurs not only with
these frequencies and their harmonics but also with the
so called combination tones [19]. Thus, for instance, if one
impresses on the grid of an electron-tube oscillator with
the nonlinear characteristic of the form 7, = a, v + a, v°
+ a; v* (where ¢, is the anode current and » the grid
voltage), a voltage of the form v = voz (sin w,t + sin w,t),
it is easy to show that the frequencies w;, w,, 2w,
2wy, 3wy, 3wz w1 Tt e, w1 — Wy, 2w+ wy, 20, — W
2w, 4+ w;, 2w, — w; will appear in the plate current. The
first frequencies are the original frequencies and their
harmonics, but the other ones.are the combination tones.
Those of the latter whose frequencies are lower than the
lowest of the two frequencies w, and w, are called sub-
harmonics. The combination tones are given by the formula
me, + nw., where m and n are (positive or negative)
integers. One readily sees that, if w, is the free frequency

w =



376

of the system, and if the condition w, = mw, + nw, is
fulfilled, a resonance effect is to be expected in such a
system.

On this somewhat intuitive basis, the phenomena of the
subharmonic resonance are obvious, once the existence of
subharmonic is recognized. If, however, one tries to
proceed analytically, one encounters considerable difficulty
because, given a differential equation, the determination
of a subharmonic as well as its stability generally involves
very long calculations. These difficulties very likely
account more than anything else for our present relatively
limited knowledge of these phenomena, although their
physical nature is simple enough.

The first complete theory of the subharmonic resonance
was given by Mandelstam and Papalexi {20]. These
authors dealt directly with the nonautonomous DE of the
resonance. The calculations of stability are rather long,
as this involves the calculation of the characteristic ex-
ponents, as the variational equations here appear with
periodic coefficients.

We prefer to treat this problem by the stroboscopic
method which simplifies the problem to some extent.

We consider the DE, ’

i+ = 4 uf(z, £) = sinnt. (38)

It is noted that the amplitude of the external periodic
excitation here is one, as this can always be done by a
change of the independent variable.

We wish to show that there may still be a periodic
solution with frequency one in spite of the fact that the
frequency of the external excitation is n (z.e., the sub-
harmonic resonance of the order n). If u = 0, the generating
solution z,(f) is

2(f) = A Sint + B cos t + (39

T sin nt,

and likewise for y(f) = #(¢). If one forms now the con-
ditions of periodicity (6) one finds

z(t) = = [ sin (¢ = )fe, ) ds;
°t (40)
y(t) = _f cos (t — o)f(xo, Yo) do,
0
which results in the first approximation,
2(t) = xo(t) + pxi(t); Y& = yol®) + wn(®. (41

At this point there is a ramification of the problem into
two cases: 1) when the resonance is exact, and 2) when the
system 1s in the neighborhood of the exact resonance. In
the latter case there appears also the phenomenon of
synchronization, which we shall investigate later. As the
first problem is simpler, we investigate it here. In fact, the
difference between the two cases is in the length of calcu-
lations only. For the exact resonance, all integrations are
between 0 and 2w, so that the integrated parts vanish,
whereas in the second case the integrations are between
0 and 27 + ¢ where ¢ is “the detuning” from the exact
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resonance. In order to simplify the problem still further,
we investigate the subharmonic resonance of the order
1/2 for the DE,

t— pla — BE)E + £ = esin 2t,

which by the change of the dependent variable ¢ = ex
reduces to

i — pla — v2)& + = = sin 2¢; v = Bé. (42)
The generating solution in this case is

2o(f) = Asint + B cos t — }sin 2¢;

(43)
Yo(f) = A cos t== Bsin t — 2 cos 2¢
and the conditions of periodicity (6) are
2(2m) — 2(0) = z,(2m) — 2o(0) + pzs(2m) = O, (44)

y@m) — y(0) = yo(2m) — yo(0) + wyu(2m) = 0,

since z;(0) = y,(0) = 0, as follows from (40). Eqs. (44)
are adequate for the determination of the existence of the
subharmonic but not of its stability. For the latter it is
preferable to investigate the approach to the subharmonic
solution. For this it is useful to consider the case when the
right-hand terms in (6), instead of being zero, are certain
quantities, say Az and Ay. It is noted also that z(0) = B
and y(0) = A — 2/3. Since in the stroboscopic method
the ultimate variables are the initial conditions in each
interval 2w, it is useful to introduce A and B as new
variables. Calculations at this point are simple but long,
as expressions (39) are to be introduced into f(z,, %,) and
the results so obtained have to be integrated between
0 and 27. The stroboscopic system in this case becomes

@_LB{ [1 s g L}}
= 3Bja —v| 7 (4° + B°) + ;
dr 4 18 (45)
a4 _ L, 2 1L
U i -l 4+ 4]

The introduction of polar coordinates p = A* + B? and
¢ = tan“(B/A).simpliﬁes matters. Forming the combi-
nation BB + AA = 1dp/d, one gets

dp

2 = i (46

— 37 — 1vel = Ro(p).
The second combination is of no interest, as one has
simply d¢/dr = 0. From (46) one obtains an expression

for the stationary amplitude
_A ( 1 )
Po = Be? « 18 Be ) (437)

since v = Bé°.

Hence the stationary amplitude p, = rg can exist only if
e < (48)
This is the essential feature of the nonlinear resonance.

In ordinary (linear) resonance, the amplitude of oscilla-
tion exists for any value of the external periodic excitation;
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here it exists only as long as the external excitation is not
too large.

Since the stroboscopic method reduces the problem of
stability of the periodic solution of the original system to
that of the singular point of the stroboscopic system, the
condition of stability is

Ry(po) <0, (49)

and one finds easily that the condition of stability is
always fulfilled in this case.

The problem of determining a stable subharmonic
solution in this case was simple because it was possible to
introduce the variable p. However, this is not always
possible.

Thus, for instance, if one tries to ascertain the existence
of the subharmonic resonance of order 1/3 in the case of a
Duffing equation,

£+ af + ¢ + £ = esin 3¢, (50)

and proceeds as previously shown, the coordinates of the
singular point in the stroboscopic plane are given as real
roots common to two algebraic equations,

ad + %’ye{B(A-é + B®) — 1AB + éiB] =0,

13]:0,

= DA B + 5

(51)
—aB + %'ye?l:(

where @ = ua, ¢ = py. The difficulty is thus in the algebraic
part of the problem. It is'likely that these long calculations
account more than anything else for a relative scarcity of
information concérning ‘the quantitative data regarding
subharmonic resonances of higher orders.

C. Synchromzatwn

The discovery of the phenomenon of synchronization
(or “entrainment’” of frequency) goes back to Hyghens
(1629-1695). Belng inventor- of the mechanism of escap-
ment in clocks, he observed. the following fact: two clocks
were slightly unsynchronized with one another when hung
on a wall but-became-synchronized when suspended on a
thin wooden board. More than two centuries elapsed
before similar effects were observed in electric circuits.

The simplest way of observing this phenomenon is to
impress on the grid of an electron tube oscillator (in
addition to the normal feedback voltage) an extraneous
voltage of a different frequency. If w, is the frequency of
the oscillator and « that of the applied voltage, one
observes the following effect: if w is sufficiently far away
from w,, there is the usual phenomenon of interference or
“beats” of the two frequencies as this happens also in
linear systems. If, however, w approaches sufficiently
near to w,, the beats disappear suddenly and there remains
only one frequency w. Everything happens as if the free
frequency of the oscillator were ‘“entrained” by the
external frequency w. This occurs within a certain band
+ w*) of frequencies around w,; if w leaves this
interval, the two frequencies separate.

(— w*;
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Van der Pol gave a theory for this phenomenon [21] by
assuming a solution of the form

2(f) = b, sin wt + b, cos wt. (52)

If one inserts this solution into the DE (which is not
written here), it is necessary to assume that b, and b, are
slowly varying functions of time in order to satisfy the
DE. Then it is possible to reduce the original DE to a
system of the form

1.71 = f(b, b2);

b, = g(by, bs). (53)

This is now an autonomous system whose singular point
oceurs for f = g = 0; in such a case b, and b, become
constant and the solution represents the phenomenon of
synchronization. From this point Andronov and Witt
[22] developed a purely topological theory of synchroni-
zation which can be found also in reference [23].-

One can also apply the stroboscopic method. It permits
approaching this problem from a quantitative point of
view, but it does not possess a simple intuitive approach
to this question as does the topological method.

We consider again the DE

&4+ (2 — @)z + x = ¢sinwl

where a, ¢, and e are small numbers (the assumption that
¢ is small is not essential; it merely simplifies the argument)
and w = 1 + ¢ e being generally small. In other words, we
wish to consider the problem of nonlinear resonance of the
first order but not the exact resonance, since we wish to
consider the synchronization feature of the phenomenon
which occurs in the neighborhood of the exact resonance.

If one reproduces the calculations inherent in the strobo-
scopic transformation with which we are now familiar,
one easily reaches the stroboscopic equations which are of
the form

dr 1
5V = —3 (ao"'3 + axr + a5);
dr A (54)
Z—(b = —= (bor + by + by).
.

It is more convenient in this case to use the variable r
(and not p); in addition to this, the integrations are to be
carried between 0 and A = 27 /w, since in the synchroniza-
tion the frequency is i¢mposed by the external periodic
excitation.

The coefficients in (54) are certain trigonometric func-
tions of sin (¢ — A/2) and cos (¢ — A/2) and their
multiple arguments, where ¢, is the phase angle at the
exact resonance. It can easily be calculated (we omit this
calculation), and one finds that ¢, = 7. With this value
one can calculate the coefficients for the various values of
“detuning.”” The problem reduces then to one of ascertain-
ing for which values of coefficients in (54) the cubic poly-
nomials have a real common root. Synchronization exists
if such a root exists and disappears together with this root.

Summing up, in this problem as in the subharmonic
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resonance problem, the stroboscopic method clears up
analytical difficulties, but the algebraic difficulties appear
at the end in the computational part of the problem.

Unfortunately, this seems to be a common feature of all
nonlinear problems when one tries to obtain quantitative
results. If these problems are to be cleared up quanti-
tatively, perhaps the use of computing machines would
be a proper way of proceeding without too much loss of
time.

D. Asynchronous Actions

When the frequency of external periodic excitation is
outside the zones of synchronization and is in no rational
ratio with the frequency of the self-excited oscillation, it is
customary to speak about asynchronous actions. The term
“asynchronous” specifies the lack of any rational ratio
between these two frequencies. If the “autoperiodic”
(self-excited) frequency is present, there are usual ‘“beats”
between the two frequencies; if it is absent, there remains a
small ‘“‘hetero-periodic’” (forced) frequency (sometimes it
does not exist).

These phenomena are as yet little explored except in
two cases: 1) If the heteroperiodic frequency w is very
high in comparison with the autoperiodic frequency ws,
the existing self-excited oscillation (with frequency )
is destroyed or “‘quenched” by the external frequency w.
This phenomenon is usually called the asynchronous
quenching. 2) If the nonlinear characteristic is represented
by a polynomial of at least fifth degree (that is, with an
additional inflexion point), another nonlinear phenomenon,
the asynchronous excitation, is occasionally possible. It
can be described as follows: in the absence of the external
frequency w, the circuit is at rest, but as soon as w is
applied, it begins to oscillate with <ts own frequency. The
frequency « appears thus as a kind of a trigger action
releasing oscillation with frequency w,. Here the magnitude
of w is not of importance (as it is in quenching); what is
important here is the form of the characteristic without
which the effect does not appear.

We shall not enter into the theory of these effects; it is
sufficient to say that the quenching phenomenon is easily
treated by the stroboscopic method [24] on condition that
we take into account that w is large in the final result. In
the excitation phenomenon the matter reduces to a simple
topological representation if one recalls that for the
characteristic of the fifth degree there are two limit cycles,
and since normally (without ) the system is at rest, the
configuration is SIS in the notations of Section I. D. If,
however, the hetero-periodic frequency w is applied, the
nonlinear coupling (since the principle of superposition
does not hold here) acts so as to modify the configuration
according to the bifurcation of the first kind; SIS —
(SI)S — IS which releases the autoperiodic oscillation.

The two phenomena (especially the second one) are
relatively little known but seem to be of a considerable
applied interest in view of the possibility of influencing
one oscillation by another one of an entirely different
frequency.
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E. Piece-Wise Linear Phenomena

In the preceding sections we have followed the classical
nonlinear theory which requires that the solutions of a
DE should not only be continuous but should also have a
certain number of continuous derivatives. The question
of nonlinearity was thus limited to an implicit requirement
of the analyticity of the solution; the latter was supposed
to be an analytic curve (not only continuous but possessing
continuous tangents, ete. . Under these assumptions, the
existence of self-excited oscillations becomes possible only
in nonlinear systems as defined by the DE (2a), that is,
only when P, and @, in (2a) are different from zero; these
oscillations are thus impossible in linear systems.

The above requirements are realized in the classical
theory, but a number of experimental facts have shown
that weaker conditions are sufficient for the existence of
self-excited oscillations. In fact, it has been known for
some time that such oscillations appear also in perfectly
linear systems whose solutions exhibit certain points at
which the analyticity is lost (but, generally, not the con-
tinuity); this usually indicates the presence of impulsive
actions. Such phenomena are of a frequent occurrence in
modern control systems where a number of secondary
effects such as dry friction, backlash, hysteresis, relay
actions, oversaturation, etc. may occasionally prepare
a favorable ground for their appearance in otherwise
perfect linear systems.

As it is impossible to go into this matter here we shall
indicate an example [3] which will clarify the physical
nature of these phenomena.

Consider a discontinuous characteristic B’A’OAB
(Fig. 9) which may be regarded as a limit of functions 1,
2, 3, --- , which approach the broken line B’A’OAB.
Physically this may be the electron tube characteristic
for a gradually increasing grid voltage (with a corre-
sponding contraction of the z scale), or a relay switching
“on” and “off”’ a certain circuit, ete.

Whatever the nature of this discontinuous action may
be, what is essential is that a certain “‘step function’ is
so introduced.

We consider a simple linear DE with a positive damping,

F + 2hi + wex = 0, (55)

and require that during the time when £ < 0, this DE
does not have any external action, but if £ > 0 this DE
acquires a constant right-hand term, say w; representing
a kind of a “step function,” due to “on’’ and “off” con-
ditions.

We have thus a phenomenon governed by an alternate
sequence of two DE which have exactly the same left-
hand sides but differ only by the right-hand sides, and this
replacement of one DE by the other takes place when
£ = 0. We have thus

& + 2hi + iz

I

0 for 2 <O
and
& 4+ 2hi + iz = wp

for # > 0. (56a)
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Fig. 10.

Clearly, the second equation can be written as &' -+
Ohi' 4 wii’ = 0, if we set 2’ = z — 1. This means that
in the (t, z) diagram (Fig. 10) we have to use the regular
0¢{ axis when & < 0 and use the ‘“displaced” axis 0't'
when ¢ > 0.

Suppose we start (¢ = 0) at the point A. As £ < 0,
from A to A’ we use the f axis; at the point A’ we change
from ¢ axis to t' axis. It is noted that, although with
respect to the ¢ axis the point A’ is nearer to that axis
(because of the dissipation of energy), A’ may be more
distant from the ¢ axis than A’ because from A’ to A"
intervenes the displaced axis t’. In other words, if the con-
stants are properly chosen, what is lost in the dissipation
can be made smaller than what is gained, owing to the
displacement of the abcissa axis when & > 0. A scheme of
this kind may exhibit the feature of self-excitation (its
amplitudes grow) in spite of the presence of the positive
damping.

It is necessary to ascertain whether a stationary state
is possible [3]. Let the ordinates corresponding to the
points A, A’, A", - - - bez,, z{,z{’, - - - . During the motion
from A to A’ we have the relation

z] = z, exp (—d/2), (56)

where d = AT = 2rh Vet — K is the logarithmic
decrement. For motion between A’ and A’ (when the
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“displaced axis’’ operates), we have
1Y

"— 1 = (2! + 1) exp (—d/2). (67)

Eliminating z{ between these two equations, we have

!’ =14 exp (—d/2) + z, exp (—d). (58)

This equation determines the transformation we are
interested in; if one knows the amplitude z,, it is possible
to obtain the following amplitude z{’.

Clearly, if the trajectory is closed, x, = z{’ = #, and
we have thus the following condition for the existence of a
limit cyecle:

1

= 1 — exp(—d/2)

> 1. (59)

Instead of this argument one can use a more direct topolog-
ical argument. In fact, each of the two DE’s (56a) and
(56b) can be represented in the phase plane by spiral
trajectories but referred to two different local points
displaced along the z axis. In this manner, the ultimate
closed curve (which represents the periodic motion) con-
sists of two “pleces’”’ (arcs) of logarithmic spirals which
are “fitted together”” on the z axis.

Along the spiral ares (the analytic region) the system
is dissipative as h > 0 but, since the stationary motion
is periodic, energy (on the spiral arcs) is compensated for
by the impulsive inputs of energy occurring of the non-
analytic points (the spirals of which are “fitted together”).

A system of this kind, from the standpoint of energy
relations, behaves as a clock where a similar situation
exists owing to the impulsive replenishing of energy on
the part of the escapment mechanism.

It is to be noted that we have here a closed trajectory,
a limit cycle, but that this cycle is composed of two analytic
arcs joined to each other at the points A, A’, A", --.
At these junction points, both the continuity of the solu-
tion and of its first derivative are preserved, but the dis-
continuity takes place in the second derivative (radius of
the curvature). This is suflicient already to render the
conclusions of the classical theory inapplicable. In fact
we have here self-excited oscillations in a purely linear
system, which at a first glance contradicts all that has
been said before. In reallity this is not so, as in the analytic
theory we have assumed that the integral curves are also
analytic. Here we have come across phenomena which
show that this does not occur here, and one should not
wonder that the conclusions are totally different.

These physical considerations (of Andronov) were later
generalized in the form of the point iransformation method
[25], which we will outline briefly.

Assume that- there are in the phase plane a certain
number of arcs of analytic trajectories, A,, A,, --- A,,
traversed by the representative point R. Each of these
“pieces” (arcs) is connected to the others, but at the
points of junctions the analyticity is lost (e.g., points with
two distinct tangents). The point R traverses this polygone
of arcs passing from the beginning, say o of arc A4, to
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its end, a!’; then passing to the next arc A, (obviously:
al’ = a}) ete.

Clearly, a periodic motion is possible if this polygone
s closed which requires that a] should coincide with a’’.
This amounts to the existence of the fized point of the
transformation: T = T, T,, T4, where Ty, are
partial transformations, transferring £ from the beginning
a! of A; to its end a}’. Each such partial transformation
can be easily calculated as the motion of K on each arc is
governed by a simple linear DE.

In spite of the apparent simplicity of the method, its
application is not simple, as the relation connecting the
initial point a! of an arc A; with its terminal point a}’
introduces inevitably transcendental functions (the ex-
ponential as well as the trigonometric ones).

Hence, if one writes all these conditions, adding also the
condition of re-entrant path, one has to solve a number of
transcendental equations which is a complicated problem.

In a simple case of the fourth order (amenable to a
system of two DE’s of the second order whose solutions
are joined nonanalytically so as to obtain a fixed point of
the transformation), one can carry out the calculations
and discuss the results [25].

This method has been recently applied to the theory of
nonlinear servomechanisms possessing nonanalytic features
of the piece-wise linear type [26].

It must be noted that this approach is entirely outside
the scope of the nonlinear theory of DE with the analytic
singularities which has been outlined in the preceding
sections, and as was mentioned, there are yet considerable
difficulties to be overcome before it can be used in more
complicated problems.

As we have already mentioned, these phenomena are of
a frequent occurrence in the control theory, and this is
the reason why the study of self-excited oscillations in
that theory presents itself differently.

F. Conclusions

We have attempted to condense in this review the
salient points of the modern theory of oscillations. Two
methods, or groups of methods, dominate the whole
situation: 1) topological (or qualitative) and 2) analytical
(or quantitative), but it must be recalled that they apply
to a rather restricted class of problems from the point of
view of the theory of DE, namely those which appear with
a parameter. The well-explored field is still more restricted
and lies in the domain of small parameters. In this domain
there are again two subdivisions: the autonomous problems
and the nonautonomous ones. The former appeared first,
and here both major lines of attack, 1) and 2), are avail-
able; in the latter only 2) is available. The principal
practical difficulty here is the question of stability. The
DFE’s in this case have periodic coefficients. This fact raises
the very difficult problem of determining the characteristic
exponents. The development of the stroboscopic method
was due to a large extent to a desire to obviate this
difficulty.
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If one tries to go beyond this domain of small param-
eters, one encounters considerable difficulties which have
not been completely overcome. This applies to the domain
“of large parameters,” that is, the so-called relaration
oscillations and also to the piece-wise linear (or, more
generally, piece-wise analytic) problems which we
mentioned in the preceding section. The two problems
are to some extent related to one another if one approaches
the relaxation problems on the basis of an idealized dis-
continuous treatment. The theoretical approach to these
problems is still in a very early stage. There is, finally,
still another approach on the basis of certain functional
equations of the so-called difference-differential type which
appears each time when certain constant time lags appear
in the chain of cause-effect actions.

If, instead of going more or less into the unknown, or
at least into something which is as yet little known, we
wish to consider the well-explored domain of small param-
eters, the situation presents itself as follows. In recent
years the theory of approximations, the so-called asymp-
totic methods [13], has reached a stage when the solution
of a nearly-linear problem can be determined with any
accuracy one wishes at the cost of the length of
calculations.

In applied problems one comes across a purely practical
question: How far is it necessary to go In successive
approximations in view of the fact that in general the
accuracy with which the nonlinear data are known is very
limited? In most cases the answer to this question is
that, usually the first approximation is amply sufficient in
engineering problems. In fact, the first approximation
generally reveals all essential features of a nonlinear
problem such as whether limit cycles are present or not,
whether there are any bifurcation points, how the phe-
nomenon behaves near the state of rest, etc. Already
the second approximation increases considerably the
computational work without adding anything of interest
to the qualitative side of the problem; it adds merely a very
small quantitative correction to what has been yielded by
the theory of the first approximation. For these reasons
the theory of first approximation is very important in
applied problems. There are cases when the theory of the
first approximation may fail and the higher order approxi-
mations become necessary, but such situations are very
rare in commonly-encountered nonlinear problems.

If we wish to consider now the physical aspects of the
theory, one must admit that our ability to produce the
predetermined nonlinearities is yet very limited. We know,
for instance, that in order to produce a “soft” character-
istic, one has to use a cubic law in its polynomial approxi-
mation; to produce a ‘““hard” characteristic (with one
additional cyele), this polynomial must be of the fifth
degree, etc. If one wishes not only to produce the phe-
nomenon but to “gauge” it sufficiently accurately (DE
to establish definite relations between the limit cycles,
etc.) one has to know much more: For instance, what is
the relation between the coefficient of the fifth degree to
that of the third degree? One has to admit that such a
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synthetic production of predetermined characteristics is
still beyond our reach. We are still in the qualitative phase
of our knowledge of these numerous phenomena and are
unable to verify theoretical predictions except in some
isolated cases such as was the case of the Mandelstam-
Papalexi experiments.

Paraphrazing the words of Leonardo da Vineci, “me-
chaniecs is a paradise for a mathematician,” one can
perhaps say that the nonlinear field also presents a kind
of a “paradise’”’ of potential possibilities, once the theo-
retical knowledge of these numerous phenomena is
supplemented by adequate means for their experimental
realization.
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